Mechanisms of pulsed laser microbeam release of SU-8 polymer "micropallets" for the collection and separation of adherent cells.
نویسندگان
چکیده
The release of individual polymer micropallets from glass substrates using highly focused laser pulses has been demonstrated for the efficient separation, collection, and expansion of single, adherent cells from a heterogeneous cell population. Here, we use fast-frame photography to examine the mechanism and dynamics of micropallet release produced by pulsed laser microbeam irradiation at lambda = 532 nm using pulse durations ranging between 240 ps and 6 ns. The time-resolved images show the laser microbeam irradiation to result in plasma formation at the interface between the glass coverslip and the polymer micropallet. The plasma formation results in the emission of a shock wave and the ablation of material within the focal volume. Ablation products are generated at high pressure due to the confinement offered by the polymer adhesion to the glass substrate. The ablation products expand underneath the micropallet on a time scale of several hundred nanoseconds. This expansion disrupts the polymer-glass interface and accomplishes the release of the pallet from its glass substrate on the microsecond time scale (approximately 1.5 micros). Our experimental investigation demonstrates that the threshold energy for pallet release is constant (approximately 2 microJ) over a 25-fold range of pulse duration spanning the picosecond to nanosecond domain. Taken together, these results implicate that pallet release accomplished via pulsed laser microbeam irradiation is an energy-driven plasma-mediated ablation process.
منابع مشابه
Impact of release dynamics of laser-irradiated polymer micropallets on the viability of selected adherent cells.
We use time-resolved interferometry, fluorescence assays and computational fluid dynamics (CFD) simulations to examine the viability of confluent adherent cell monolayers to selection via laser microbeam release of photoresist polymer micropallets. We demonstrate the importance of laser microbeam pulse energy and focal volume position relative to the glass-pallet interface in governing the thre...
متن کاملHydrodynamic determinants of cell necrosis and molecular delivery produced by pulsed laser microbeam irradiation of adherent cells.
Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse d...
متن کاملMechanisms of laser cellular microsurgery.
This chapter reviews the optics of pulsed laser microbeams and the use of basic instrumentation to provide pulsed laser microbeam capabilities within a microscope platform. Moreover, we review the principal mechanisms by which laser microbeams produce microsurgical effects in cellular targets. We discuss the principal photothermal, photomechanical, and photochemical damage mechanisms as well as...
متن کاملExamination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging.
We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at lambda = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavit...
متن کاملPulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects.
Time-resolved imaging was used to examine the use of pulsed laser microbeam irradiation to produce cell lysis. Lysis was accomplished through the delivery of 6 ns, lambda=532 nm laser pulses via a 40x, 0.8 NA objective to a location 10 microm above confluent monolayers of PtK2 cells. The process dynamics were examined at cell surface densities of 600 and 1000 cells/mm2 and pulse energies corres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 80 12 شماره
صفحات -
تاریخ انتشار 2008